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ABSTRACT

The notion personalization lies on the core of a real-world product
search system, whose aim is to understand the user’s search intent
in a fine-grained level. The existing solutions mainly achieve this
purpose through a coarse-grained semantic matching in terms of
the query and item’s description or the collective click correlations.
Besides the issued query, the historical search behaviors of a user
would cover lots of her personalized interests, which is a promising
avenue to alleviate the semantic gap between users, items and
queries. However, as to a specific domain, a user’s search behaviors
are generally sparse or even unavailable (i.e., cold-start users). How
to exploit the search behaviors from the other relevant domain and
enable effective fine-grained intent understanding remains largely
unexplored for product search. Moreover, the semantic gap could be
further aggravated since the properties of an item could evolve over
time (e.g., the price adjustment for a mobile phone or the business
plan update for a financial item), which is also mainly overlooked
by the existing solutions.

To this end, we are interested in bridging the semantic gap via a
marriage between cross-domain transfer learning and knowledge
graph. Specifically, we propose a simple yet effective knowledge
graph based information propagation framework for cross-domain
product search (named KIPS). In KIPS, we firstly utilize a shared
knowledge graph relevant to both source and target domains as a
semantic backbone to facilitate the information propagation across
domains. Then, we build individual collaborative knowledge graphs
to model both long-term interests/characteristics and short-term
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interests/characteristics of a user/item respectively. In order to har-
ness cross-domain interest correlations, two unsupervised strate-
gies to guide the interest learning and alignment are introduced:
maximum mean discrepancy (MMD) and kg-aware contrastive learn-
ing. In detail, the MMD is utilized to support a coarse-grained
domain alignment over the user’s long-term interests across two
domains. Then, the kg-aware contrastive learning process conducts
a fine-grained interest alignment based on the shared knowledge
graph. Experiments over two real-world large-scale datasets demon-
strate the effectiveness of KIPS over a series of strong baselines.
Our online A/B test also shows substantial performance gain on
multiple metrics. Currently, KIPS has been deployed in AliPay for
financial product search. Both the code implementation and the
two datasets used for evaluation will be released online publicly1.
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1 INTRODUCTION

Product search has become an indispensable part of many online
businesses. The purpose is to extract the desired product from
a tremendous amount of (homogeneous) compatible candidates.
Compared with traditional web search that identifies the relevant
information regarding the user’s information need, we need to pre-
cisely approximate the personalized user interest for product search.
In other words, performing only the semantic matching based on
the user query and item’s textual description is not effective to
distinguish the fine-grained intent for better user satisfaction.
1THe code and datasets are available athttps://github.com/WHUIR/KIPS
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Figure 1: The search intents of the same user across two

domains share some correlations. The clicked items in the

source domain (i.e., S2 and S4) are relevant to the item F2.
Although F2 does not exist in the user’s interactions in the

target domain, we can infer that the user is interested in F2
based on her interactions in the source domain.

Inspired by the recent advance of recommendation systems
[9, 11, 14, 21, 33], the historical search behaviors of a user can
be considered as a reflection of her personalized interests. Given
the sufficient user search behaviors for the relevant items (e.g., in
the same domain), it is promising to alleviate the semantic gap
between the users and the items by leveraging the interacted items.
However, we still face two critical challenges for real-world sce-
narios. Firstly, the search behaviors of a user could be very sparse
and imbalanced. As to a specific domain, we may not have any
historical search behavior for a user. In this case, it is hard for us to
refine the user’s search intent correctly. Secondly, the properties
of an item could evolve over time. For example, in our financial
product search system, the price of an item could change constantly
and the business profile of this item could also be updated.

Actually, the items clicked previously by the same user on differ-
ent domains may have some correlations. We can infer the user’s
fine-grained interest on the target domain by transferring her in-
terest from some relevant domain (i.e., source domain). In the past
cross-domain methods, the correlated features are usually trans-
ferred based on the overlapping users[35]. Specifically, the existing
works usually learn the representations of overlapping users on
two domains respectively, and then exploit representation corre-
lation across domains. These works can be summarized into two
categories. The first ones are to directly fuse the user embedding
learnt from the source domain into the target domain [10, 33, 34].
The other category is to use a distance constraint loss to minimise
the distance between the two user embeddings [3, 15]. However,
both the two strategies aggregate information across domains in
a coarse-grained manner, which probably introduce unnecessary
noise. Besides, these methods ignore the relatedness of the items in
different domains, or only establish indirect relationships through
co-click patterns. Furthermore, it is unknown how to accommodate
the temporal dynamics of the item properties, which could be a
critical factor in many product search systems.

To this end, in this paper, we propose to bridge the semantic gap
via a marriage between cross-domain transfer learning and knowl-
edge graph for personalized product search. As shown in Figure 1,

the same user could search financial items in two relevant domains.
We can utilize a shared knowledge graph relevant to both domains
to explicitly establish the underlying interest correlation. It is clear
to see that the clicked items (i.e., S2 and S4) in the source domain
are relevant to financial item F2 in the target domain. Therefore,
we can refine the search results following these semantic clues for
better search efficacy.

Many existing knowledge graph based models learn entity and
relation representations by knowledge graph embedding. This re-
sultant structure information is validated to be beneficial for many
downstream tasks. Some methods such as KGAT [27], proposes
to transfer structure proximity in terms of graph convolutional
network for item recommendation. They inject the user-item inter-
actions into the underlying item knowledge graph as a collaborative
knowledge graph. Following this idea, we devise a novel knowledge
graph based information propagation framework for cross-domain
product search (named KIPS). As aforementioned, a shared knowl-
edge graph covering both the source domain and target domain is
utilized to facilitate the information propagation. To further accom-
modate with the dynamic nature of both user interests and item
properties, we first divide the interaction history of both users and
items into two parts: long-term and short-term. From a long-term
perspective, we consider that the user interactions occurring on the
relevant domains are correlated and similar. We adopt a maximum
mean discrepancy (MMD) to align the interest embeddings across
domains.

On the other hand, the short-term behaviors of the user on source
domain may contain more fine-grained interest information that is
not reflected on target domain. Hence, we choose to combine the
short-term representation of user on source domain into the user
embedding of target domain, achieving the information transfer
from source domain to target domain. Additionally, we further
introduce a kg-aware contrastive learning to enhance the fine-
grained interest alignment based on the shared knowledge graph.
In detail, for each ground-truth item in either domain, we sample
positive and negative items from the opposite domain based on
their relatedness inside the knowledge graph, and training model
to successfully distinguish the positive and negatives items. In
this way, we can not only enhance the bidirectional transferring
between source domain and target domain, but also enrich the
users’ interest information of the target domain.

Our contribution can be summarized as follows:

• To the best of our knowledge, there is no existing work that
performs product search through a cross-domain learning
paradigm by knowledge graph. Our work can be considered
as the first attempt by exploiting the historical search behav-
iors from the other relevant domain to enhance the search
intent understanding in a fine-grained manner.
• The proposed KIPS performs interest alignment across do-
mains by explicitly modeling the long-term and short-term
interactions between users and items, which can capture the
dynamics of item properties and user interests. Moreover,
we introduce a kg-aware contrastive learning to enhance the
fine-grained interest alignment based on the shared knowl-
edge graph.
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• We perform extensive offline experiments on two pairs of
real-world datasets. Both offline and online experiments
demonstrate the superiority of our proposed model over
the state-of-art methods.

2 RELATEDWORK

Since our work is highly related to product search, transfer learn-
ing and cross-domain learning, as well as graph neural networks,
therefore we briefly summarize the existing advances on these
areas.

2.1 Product Search

The object of product search is to estimate the click or purchase
likelihood of an item in terms of the query issued by the user
and her personalized information. Recently, this task has drawn
increasing attention both in academic and industrial. Earlier work
learns query representation from structured product entities [4].
DRL [12] proposes to obtain an optimal ranking policy based on
reinforcement learning. GEPS [31] incorporates graph embedding
techniques into neural retrieval models. They construct a query-
item click graph and enrich the semantic information for both
queries and items, which is validated to be effective in alleviating
the semantic gap to some extent.

Note that for product search, a general query could match well
towards thousands of homogeneous yet comparable items. There-
fore, we need to incorporate user preference to refine the search
results. Specifically, some works focus on the personalized product
search. HEM [2] proposes a hierarchical embedding model to jointly
learn semantic representations of different entities for personalized
product search. Guo et al. [7] combine visual preference of users
into a multi-modal personalized product search method. Then they
further propose to combine the long and short term user prefer-
ences with the current query to capture users’ search intentions [6].
Ai et al. [1] introduce a zero attention model for product search
which can automatically determine to personalize user-query pairs.
DBML [28] proposes a dynamic learning model to learn latent rep-
resentations through a probabilistic metric learning framework
which can capture uncertainty of entities. GraphSRRL [16] models
the structural relationship into graph representation learning to
effectively learn a better personalized product search.

2.2 Transfer learning and Cross-domain

learning

Under the paradigm of deep learning, fine-tuning strategy is a
simple but widely used solution for transfer learning. It first ini-
tializes the model parameters for the target domain by adopting
the parameters of the well-trained models on the source domain,
Then fine-tuning is performed based on labeled data on target
domain [18, 30]. A more effective method is to share the hidden
feature representations and model parameters between the source
tasks and target tasks [29]. Note that there is only few works that
perform transfer learning for product search task. The relevant ef-
forts are mainly devoted to enhance recommendation performance.
Specifically, CMF [22] transfers knowledge by factorizing the joint
rating matrix across domains. They utilize the shared user factors
to enable information transfer. Similarly, CoNet [10] achieves dual

knowledge transfer between source domain and target domain.
CATN [33] extracts multiple aspects from reviews and learns the
aspect correlations across domains. WE-CAN [20] proposes a new
Wasserstein regularizers which can push the shared features closer
and pull domain-specific features more apart. Recent years, more
efforts choose to learn the item and user representations by prop-
agating information across domains based on graphs [26, 32, 35].
CD-GNN [17] introduces an additional domain classifier loss to
promote the information transfer between domains.

2.3 GNN-based Model

Graph Neural Networks (GNN) can capture inherently high-order
dependencies between nodes. Hence, many variants of GNN, such
as GCN [13, 32], GraphSage [8], GAT [25] have been widely applied
in various scenarios. KGAT [27] employs GAT into the knowledge
graph. It proposes to construct a collaborative knowledge graph
and apply attentive embedding propagation on this collaborative
knowledge graph. KCAN [24] refines the knowledge graph to obtain
target-specific node representation with a conditional attention
aggregation. To summarize, no existing work aims at performing
fine-grained intent understanding in the paradigm of cross-domain
learning for product search. Another novelty of our proposed KIPS
is to facilitate the information propagation by utilizing a shared
knowledge graph as the underlying semantic backbone.

3 METHODS

We start with the preliminaries including the notation description
and the construction of collaborative knowledge graph. Then, each
component of the proposed KIPS is described in detail, followed by
the model optimization process.

3.1 Preliminary

Given there are two domains, let S =< U ,QS ,IS > and T =<
U ,QT ,IT > denote the source and target domains respectively.
Here, U denotes the set ofm overlapped users in both domains,
QS and QT denote the set of queries in the source domain and
target domain respectively, IS and IT denote the set of items in
S, T respectively.

For a given user u in U , we can organize her clicked items
during the previous search activities in chronological order as
N S = {iS1 , i

S
2 , · · · , i

S
m }, N T = {iT1 , i

T
2 , ..., i

T
n } for the two do-

mains, where iSj and iTj denote the j-th item clicked by the user in
the source and target domains respectively. Based on the historical
user-item interactions in N S and N T for all users inU , we can
form the corresponding user-item bipartite graph GSb and GTb for
the two domains respectively, where an edge is established between
user u and item i when item i was clicked by user u in that domain.

In addition to that, we utilize an external knowledge graph Gkд
represented as {(h, r , t ) |h, t ∈ E, r ∈ Rkд }, where a triplet (h, r , t )
indicates a relation r exists between head entity h and tail entity t ,
E and Rkд is the entity set and the relation set of the knowledge
graph respectively. It needs to be emphasized that both items on
source domain and target domain are included as entities in this
knowledge graph. In other words, we can exploit this knowledge
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Figure 2: The two-tower structure of our proposed KIPS.

graph to establish high-order relations between the items across
the two domains.

Similar to KGAT, we construct two collaborative knowledge
graphs GS , GT for the source and target domains respectively by
merging both the corresponding user-item bipartite and knowl-
edge graph together, i.e., GS = {(h, r , t ) |h, t ∈ Ē, r ∈ R̄S }, GT =
{(h, r , t ) |h, t ∈ Ē, r ∈ R̄T }, where Ē = E ∪U , R̄S , R̄T are further
augmented on the basis of Rkд by including the user-item interac-
tion (i.e., click) relations. Besides, we utilize Nh = {(r , t ) |(h, r , t ) ∈
G} to denote the neighborhood of entity h on collaborative knowl-
edge graphG. It is worthwhile to highlight that users’ search intents
in the two domains are quite different, and we cannot simply re-
gard the items in the two domains as from the same homogeneous
space. Consequently, instead of building the user-item interactions
of the two domains into a whole collaborative knowledge graph and
sharing the embeddings of knowledge graph for different domains,
we construct an individual graph for each domain. We conduct
empirical analysis to verify the rationality in Section 4.5.1.

3.2 Overview

As illustrated in Figure 2, our proposed KIPS is a two-tower struc-
ture where both the query and user’s personalized interest are
considered in the user side. For the user embedding, we first divide
the users’ behavioural sequences into long-term and short-term
based on the timestamp information of each interaction. For long-
term and short-term interactions, we further construct different
collaborative knowledge graphs. From the long-term perspective,
user search intents could be similar across domains. Hence, we
adopt a MMD loss to concretize this assumptions. On contrast,
from the short-term perspective, users may have more historical
search behaviors on the source domain. Therefore, it is possible that
the source domain could convey the recent interest information
that is not well expressed by the user on the target domain. After
performing the information propagation over these collaborative
knowledge graphs, we combine the short-term user’s embedding
on source domain into the target domain user’s embedding to form

a better user interest representation. Moreover, we introduce a
kg-aware contrastive learning to enhance the correlation learn-
ing across domains. We aim to push the embeddings of relevant
items based on the knowledge graph more similar, and pull the
embeddings of irrelevant items more apart. At last, the user-query
representations and item representations are passed through a net-
work to get the final prediction score.

3.3 Knowledge-Aware Graph Attention

Network

Inspired by KGAT and KCAN, we use a knowledge-aware attention
mechanism to propagate information on the collaborative knowl-
edge graph to capture the high-order relationships between entities.
Specifically, we aggregate the l-ego network information of entity
h within l-th layer by the following formula:

el
Nh
=
∑

(r,t )∈Nh

α (h, r , t )el−1t (1)

el−1t is the representation of entity t from the previous layer.α (h, r , t )
is a relation-specific attention which measures correlation of entity
t to entity h under the relationship r and determines how much
information is propagated from entity t to entity h, we formulate
the attention coefficient as followed:

α (h, r , t ) = so f tmax ( f (Wr e
l−1
h + el−1r ,Wr e

l−1
t )) (2)

where wr is trainable parameter, f (·) is a cos similarity function,
which calculates the similarity betweenWr eh + er andWr et .

Then the current node representation is combinedwith the neigh-
bors representation to form a new representation:

elh = LeakyReLU (W l (el−1h ∥el
Nh

) + bl ) (3)

Where ∥ means concatenation, LeakyReLU(·) is the activation func-
tion, andW l , bl are trainable parameters. After performing L lay-
ers, we then concatenate all representations of each layers as the
final output of knowledge-aware graph attention network, i.e.,
дh = e0h ∥...∥e

L
h , where e

0
h is the initial embedding of entity h and L

is the total number of layers. Through the knowledge-aware graph
attention network, we can obtain the graph embedding of each
node on the collaborative knowledge graph.

3.4 Long-Term and Short-Term Information

Propagation

We take the items clicked by the user during her previous searches
in the latest n days as short-term and those before n days as long-
term ones. Here, parameter n is to control the granularity level of
short-term interest learning. Then we divide the user interactions
N S ,N T on each domain into two parts accordingly, i.e., long-term
and short-term, or written asN Sshor t ,N

S
lonд ,N

T
shor t ,N

T
lonд , Corre-

spondingly, we can construct four collaborative knowledge graphs
for this four sets of user-item interactions: GSshor t , G

S
lonд ,G

T
shor t ,

and GTlonд .
Following the above procedure, We can obtain long-term and

short-term graph embeddings of user and item in the both domains
through knowledge-aware graph attention network д

p
o,lonд and

д
p
o,shor t , where p ∈ {S,T } means different domain, o ∈ {u, i}
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Figure 3: The procedure of generating User Embedding and Item Embedding on two domains

means user or item. Afterwards, we adopt a MLP layer to trans-
form the long-term and short-term graph embedding into a unified
whole:

д̂
p
o = MLP (д

p
o,lonд ∥д

p
o,shor t ) (4)

where ∥ is the concatenation operation.
We assume that the users’ behaviors are highly relevant across

domains in the long-term, but the source domain contains more
differentiated information compared to the target domain in the
short-term. Here, we conduct an analysis to verify the reasonability
of this assumption on our stock-fund dataset, and detailed data sta-
tistics are shown in Table 1. Wemeasure the similarity of items from
different domains in terms of the distance on the knowledge graph,
i.e., the closer distance means the higher similarity. According to
the above divided long (short) interactions sequence, we calculate
the shortest distance between the stock (source domain item) and
fund (target domain item) that are clicked by a same user. Then
the mean value of all stock-fund pairs’ distance is considered as
the distance of a user in the long (short) term. At last, we consider
the average of all users’ distance as the overall distance between
source and target domains. The resultant distances are 3.2792 and
4.5434 for the long-term and short-term respectively, which means
a more similar interaction behavior across domains in the long-
term. Also, the sufficient interactions on the source domain could
contain user’s recent interest that are not timely well reflected on
the target domain .

3.4.1 Long-term. From a long-term perspective, users’ interaction
behaviors are similar across domains, that is, the distribution of
users’ preferences in the two domains should tend to be consis-
tent. Maximum Mean Discrepancy(MMD) has been widely used
to reduce the distribution mismatch between source domain and
target domain in domain adaptation tasks. It is an effective function
without additional parameters[5]. The MMD between two input

vectors can be calculated by followed formula:

MMD
(
xs ,xt

)
=
*.
,

1
ns 2

ns∑
i, j=1

k
(
xsi ,x

s
j

)
−

2
nsnt

ns ,nt∑
i, j=1

k
(
xsi ,x

t
j

)

+
1
nt 2

nt∑
i, j=1

k
(
xti ,x

t
j

)+/
-

1
2

(5)
where k (·, ·) is the gram-matrix of all possible kernels in the data
space, andwe adopt Gaussian kernel, i.e.,k (xi ,x j ) = exp(− ∥xi−x j ∥

2

2s2 ),
which is a universal kernel function[23].

We adopt MMD as an auxiliary loss to push user long-term
graph embedding дSu lonд , дTu lonд on this two domains closer, and
facilitate the bidirectional propagation of information between the
two domains:

L1 = MMD (дSu,lonд ,д
T
u,lonд ) (6)

3.4.2 Short-term. In the short-term, it is possible that user pref-
erences on the source domain are not yet reflected on the target
domain, which can help to explore users’ preference on target do-
main. Therefore, we fuse the users’ short-term embedding on source
domain into the users’ embedding on target domain.

As Figure 3 shows, after performing a MLP transformation for
дSu,shor t : д̂

S
u,shor t = MLP (дSu,shor t ), We apply an attention mecha-

nism to generate the new user embedding on target domain:

д̃Tu = wд̂
T
u + (1 −w )д̂Su,shor t (7)

w is an automatically trainable parameter that determines how
much information is transferred from the source domain to the
target domain.

Note that we consider that the user’s long-term embeddings of
both domains are similar to each other. Therefore, we no longer
additionally pass the long-term information on the source domain
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learning.

to the target domain. Besides, the short-term information propa-
gating is happened only from source domain to target domain, so
the overall structure is asymmetrical. Since we assume that the
information in the short-term of target domain is not of great help
to source domain. As a result, we do not make any further process
for the user embedding of source domain.

3.5 KG-aware Contrastive Learning

As emphasized in the previous section, our knowledge graph con-
tains both entities of source domain and target domain. We aim to
push the embeddings of related items from different domains more
similar and pull the embedding of unrelated items more different.
For example, a stock is key invest of a fund, i.e., there is an edge in
the knowledge graph that links these two entities. Though these
two entities come from different domains, the graph embeddings
of these two entities should be closer. In order to enhance the cor-
relation between domains, we introduce a knowledge graph-based
contrastive learning loss:

L2 =
∑

p∈{S,T }

−loд(σ (д
p
i
T
д
p
j )) −

Nneд∑
k=1

loд(σ (−д
p
i
T
д
p
k )) (8)

where дpi is the graph embedding of current item in p domain. дpj
and д

p
k denotes the positive sample and negative sample graph

embedding of current item i respectively.
Both positive and negative samples are from the opposite domain.

We sample one entity directly linked with current item on the
knowledge graph as the positive sampled nodes with a certain
probability P . The probability P is determined by the properties of
the knowledge graph, such as the percentage of a fund’s key invest
stocks. For the negative samples, to guarantee the sampled nodes are
independent of the current item, we sample Nneд negative samples
nodes except the current item’s 5-hop neighbours on knowledge
graph. For example, as shown in Figure 4, the current item is fund f5,
we sample the stock s4 as the positive sample, because s4 is directly
related to f5 on knowledge graph. On the other hand, ( f5, s5) is a
negative sample pair for their complete irrelevance.

3.6 Objective and Training

A query is represented as a sequence of words:q = [w1,w2, ...,wnq ].
A word can be mapped into a dense embedding vector xi via a
word embedding table. Then we simply take the mean of the word
embeddings as the query embedding: eq = 1

nq
∑
xi .

As shown in Figure 2, our model is a two-tower structure. We
concatenate the user graph embedding ẽpu and query embedding eq ,
where p ∈ S,T and feed it into a neural network to get a unified
embedding of user and query as the left tower. While the right
tower is the item embedding processed by a neural network. The
probability of user u click item i through query q can be calculated
by:

ŷ
p
uiq = f (д̃

p
u ∥eq )д̂

p
i (9)

Then we adopt the binary cross entropy as the loss function for the
CTR prediction task:

Lpre = −
∑

p∈{S,T }

y
p
uiqloд(ŷ

p
uiq ) + (1 − ypuiq )loд(1 − ŷ

p
uiq ) (10)

The final loss function is the combination of the three parts, i.e.,
the prediction loss Lpre , the MMD between two user long-term
graph embeddings L1 and the knowledge graph based information
enhancement loss L2:

L = Lpre + L1 + L2 + λ∥Θ∥
2
2 (11)

where λ is a hyper-parameter, λ∥Θ∥22 is the L2-regularizer of pa-
rameters and embedding. We adopt Adam optimizer to minimize
the loss.

4 EXPERIMENTS

In this section, we conduct extensive experiments over two real-
world product search datasets for performance evaluation.

4.1 Dataset

We conduct offline evaluations on a large-scale real world dataset
collected from Alipay digital finance search platform. This dataset
contains consecutive exposure and click logs in December 2021.
We have extracted multiple domains in the dataset based on the
categorization of these financial items: funds, stocks and fund man-
agers. We then divide them into two groups: the first group treats
stocks as the source domain while the target domain is funds; the
second group takes funds as the source domain and fund managers
as the target domain. Note that there are overlapping users between
source domain and target domain, but each item may only exist
in one single domain. We take 21 consecutive days of data as the
training set, and the following two days as the validation set and
test set respectively. To ensure the denseness of the source domain,
we filtered the datasets to retain users with at least 10 click records
on the source domain. In addition, we filter a test subset that con-
tains users that do not exist in the training set of target domain,
and named as cold-start test set. Table 1 shows the basic statistics of
our offline data. Besides, there is a shared knowledge graph covers
the entities of all domains and the relations between entities. The
detailed knowledge graph data statistics are shown in Table 2.

3751

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Rui Zhu et al.



Table 1: The statistics of the two datasets. #records: the number of user search behaviors; #clk: the number of clicks made by

the users; Sparsity: the ratio of #clk to #records.

Dataset Stock-Fund Fund-Fund Manager
Source
Domain

Target
Domain Test Cold-Start

Test
Source
Domain

Target
Domain Test Cold-Start

Test
#users 66,905 64,123 37,950 11,165 81,361 80,063 37,066 26,167
#items 7,244 15,316 11,998 5,412 15,293 3,669 2,940 2,701
#records 20,225,847 17,938,856 955,934 16,8254 43,223,141 5,670,891 235,108 161,310
#clk 3,549,022 1,448,444 68,813 925 9,891,115 68,516 3,074 722

sparsity 17.547% 8.074% 7.199% 0.550% 22.884% 1.208% 1.307% 0.448%

Table 2: Knowledge Graph Statistics

Entity Type Count Edge Type Count
Sector 392 Fund_Sector 21,290
Fund 15,784 FundManager_Fund 20,997

FundManager 3,159 Fund_Index 1,901
Index 488 Fund_Industry 956

Industry 185 Stock_Fund 128,981
Stock 6,249 Stock_Sector 42,376

Stock_Industry 5,713

4.2 Experimental Setting

4.2.1 Baseline Methods. We compare KIPS with two categories
of baseline: three single-domain methods, KGAT[27], GEPS[31],
DHGAT[19] and three cross-domain methods, CoNet[10], WE-
CAN[20], CD-GNN[17].
• KGAT combines knowledge graph with collaborative infor-
mation, while introducing graph attention mechanisms into
collaborative knowledge graphs and training in an end-to-
end manner.
• GEPS integrates click-graph features into a unified neural
ranking model and combines heterogeneous external infor-
mation with meta-paths into this method to improve search
results.
• DHGAT attentively adopts heterogeneous and homogeneous
neighbors of heterogeneous graph nodes for search, and re-
lieves the long-tail phenomenon.
• CoNet is the collaborative cross networks, which establishes
cross connections to transfer knowledge across domains in
simple multi-layer feedforward networks.
• WE-CAN introduces a new multi-task regularizer based on
Wasserstein distance to help extract both domain-shared and
domain-private features for multiple domains.
• CD-GNN designes a domain invariant layer to indiscrimi-
nate the source and target domains, and optimizes the learn-
ing task of both domains simultaneously based on graph
embedding.

KGAT, CoNet and CD-GNN are designed for recommendation tasks
and have no query information in the original model. For a fair
comparison, we combine the same query processing methods as
KIPS into these method, i.e., the mean value of the word embed-
dings is regarded as a query embedding and incorporated as an

additional feature for the final prediction. Note that the input graph
of KGAT only combines the source domain interactions and knowl-
edge graph.

4.2.2 Evaluation Protocol. We adopt three performance metrics:
Area Under the receiver operating characteristic Curve (AUC),
Group AUC (GAUC) and NDCG@10, which are widely used for of-
fline evaluation of CTR prediction tasks. In our experiment, GAUC
can calculate the AUC between predictions and ground truths un-
der each user, and we combine the results of all users by a linear
combination with the search frequencies as the weights.

4.3 Overall Performance

The overall performance comparison results are shown in Table 3.
Note that for the Single-Domain methods, we only train them on
the target domain and report the performance on target domain;
for the Cross-Domain methods, we train them on both domains
but also report the result on target domain. We make the following
observations from the results:

Firstly, KIPS consistently outperforms all methods on all test
sets. In particular, compared to the strongest baseline, the AUC,
GAUC, NDCG@10 of KIPS are improved by 0.97%, 1.63%, 0.72%,
0.55%, 0.63%, 2.22% on the Stock-Fund test set and Fund-Fund Man-
ager test set, respectively. With distinct long-term and short-term
user information propagation patterns and kg-aware contrastive
learning, KIPS can efficiently combine information from the source
domain to the target domain. Moreover, compared with KGAT, KIPS
integrates the collaborative signals on both domains and alleviates
the data sparsity problem on the target domain. KIPS differs from
the traditional cross-domain methods such as WE-CAN in that we
not only connect the two domains through common users, but also
enable the transfer of information between the domains through
the knowledge graph. Furthermore, we find that KIPS also has a bet-
ter performance in all metrics on the cold-start test set, especially
AUC.

Secondly, KGAT is the best performedmodel in the single-domain
methods, although there is no complicated process of query infor-
mation. However, KGAT is the unique method that incorporates
knowledge graph, which means that it actually integrates informa-
tion from the other domains through the knowledge graph in our
setting, and this verifies the significance of collaborative signals
for transferring knowledge. It is worth mentioned that KGAT even
outperforms some cross domain methods. The global performance
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Table 3: Overall performance of baselines andKIPS. The best and second best results are highlighted in boldface and underline

respectively. All reported improvements over baseline methods are statistically significant at a 0.05 level.

Methods
Stock-Fund Fund-Fund Manager

Test Cold-Start Test Test Cold-Start Test
AUC GAUC NDCG AUC GAUC NDCG AUC GAUC NDCG AUC GAUC NDCG

Single
Domain

GEPS 0.8702 0.6602 0.7903 0.8034 0.6458 0.7240 0.8435 0.7036 0.8072 0.6571 0.6839 0.8115
DHGAT 0.8949 0.7464 0.8407 0.8281 0.6568 0.7492 0.8452 0.6316 0.7721 0.7350 0.5962 0.7711
KGAT 0.9103 0.7913 0.8734 0.8573 0.7017 0.8192 0.8629 0.7012 0.8252 0.8065 0.7010 0.8225

Cross
Domain

CoNet 0.8728 0.7200 0.8069 0.8081 0.6565 0.7662 0.8036 0.6325 0.8093 0.6566 0.6274 0.7988
CD-GNN 0.8948 0.7642 0.8338 0.8049 0.6630 0.7524 0.8492 0.6697 0.7925 0.7483 0.6573 0.7723
WE-CAN 0.9234 0.8085 0.8900 0.8433 0.7068 0.8288 0.8782 0.7104 0.8182 0.8136 0.6688 0.7962
KIPS 0.9324 0.8216 0.8964 0.8805 0.7125 0.8323 0.8830 0.7148 0.8435 0.8221 0.7092 0.8301

of DHGAT is better than GEPS, which indicates that the reason-
able use of heterogeneous graph structure and the successfully
aggregation of information from homogeneous and heterogeneous
neighbor nodes on knowledge graph can effectively improve the
prediction accuracy.

At last, the structure of WE-CAN is designed to be similar to a
multi-task model, enabling the full use of information in a specific
domain while effectively combining shared information. WE-CAN
achieves sub-optimal performance results over Cross-Domain meth-
ods, indicating that such a structure facilitates information prop-
agation across domains. The poor performance of CoNet inspires
us that combining cross-domain information is not always effec-
tive, as the unreasonable introduction of information from other
domains would add noise that the model cannot handle. Besides,
the mediocre performance of CD-GNN shows that the obfuscated
domain strategy is not entirely suitable for our scenario.

4.4 Ablation Study

In this part, we evaluate the effect of different components of KIPS
on the Stock-Fund dataset. In particular, we compare the original
model with five variants:(1) KIPSw/o MMD . It removes the long-
term MMD loss of KIPS. (2) KIPSw/o shor t_trans . It removes the
short-term information transfer from source domain to target do-
main. (3) KIPSw/o kдc . It removes the kg-aware contrastive learning
between the two domains. (4) KIPSw/o cross . It removes all infor-
mation propagation strategies across domains. (5) KIPSw/o query .
It removes the query embedding of the final prediction.

We summarize the results in Table 4 and have the following
observations. Firstly, it demonstrates that the MMD, short-term in-
formation transfer and kg-aware contrastive learning have different
contributions for the cross-domain information propagation. Be-
sides, KIPSw/o cross degenerates into KGAT trained in the source
and target domains simultaneously, but performs worse than KGAT,
which indicates that inappropriate introduction of information from
other domains is equivalent to noise. Finally, although we only have
a simple processing of query, it is effective of the introduction of
query information for the final prediction.

4.5 Effectiveness Analysis

4.5.1 Effectiveness of different transformation manners and the sep-
arate collaborative knowledge graphs. In our work, we expect the
long-term information is transferred in dual directions, but the
short-term information is propagated from source domain to target
domain. Thus, we can make full and effective use of information
across domains. To validate the effectiveness of this module, we
design two variant of KIPS: KIPSonly_trans and KIPSonly_MMD .

The KIPSonly_trans transfers the both short-term and long-term
information from source domain to target domain, i.e., the Eq.(7)
is changed into д̃Tu = wд̂Tu + (1 − w )д̂Su . Moreover, we remove
the MMD auxiliary loss L1 in KIPSonly_trans . Correspondingly,
the KIPSonly_MMD discards the short-term transformation, i.e.
д̃Tu = д̂

T
u , and the Eq.(6) is modified to L1 = MMD (д̂Su , д̂

T
u ). The

results of these two variants are shown in Table 5. The performance
gains of the original model indicates that it is effective to trans-
fer information in the long-term and short-term in different ways,
which are accommodated with the dynamic nature of user interests
and item properties.

Besides, we conduct an additional experiment that builds the
users’ interactions from both source and target domains into a
whole collaborative knowledge graph, and result is also shown in
Table 5, i.e., KIPSwhole_дraph . This variant means that we share
the graph embeddings of item entities for the two domains. Note
that KIPSwhole_дraph includes the source and target domains in-
teractions and performs information transfer same as KIPS, which
is different from KGAT. We can conclude that the performance of
KIPSwhole_дraph is worse than the original KIPS. In other words,
because of the heterogeneity of items from different domains, a
whole collaborative knowledge graph cannot provide excellent
knowledge transformation despite the connection of knowledge
graph.

4.5.2 Parameter Analysis. Figure 5 plots the performance of dif-
ferent ratios of short-term data to all training data. The blue line
indicates the AUC, while the orange line represents the NDCG@10.
It is shown that the different proportions of long-term and short-
term data affect the final prediction results. We observe that the
best performance is obtained when the short-term data holds 15%
either on test set or cold-start test set.
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Table 4: Performance comparison for KIPS and its five variants.

Model Test Cold-Start Test
AUC GAUC NDCG@10 AUC GAUC NDCG@10

KIPS 0.9324 0.8216 0.8964 0.8805 0.7125 0.8323

KIPSw/o MMD 0.9303 0.8140 0.8910 0.8700 0.7024 0.8260
KIPSw/o shor t_trans 0.9270 0.8113 0.8885 0.8573 0.7118 0.8274

KIPSw/o kдc 0.9165 0.7985 0.8738 0.8350 0.7052 0.8213
KIPSw/o cross 0.9058 0.7881 0.8653 0.8616 0.6979 0.8087
KIPSw/o query 0.9017 0.7609 0.8405 0.8583 0.6553 0.7447

Table 5: Effective of different transformation manners for long and short term interactions, and the rationality of building

collaborative knowledge graph for different domains

Model Test Cold-Start Test
AUC GAUC NDCG@10 AUC GAUC NDCG@10

KIPS 0.9324 0.8216 0.8964 0.8805 0.7125 0.8323

KIPSonly_trans 0.9289 0.8127 0.8917 0.8760 0.7111 0.8219
KIPSonly_MMD 0.9276 0.8140 0.8927 0.8723 0.7105 0.8266
KIPSwhole_дraph 0.9157 0.8026 0.8789 0.8485 0.7095 0.8232
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Figure 5: The AUC and NDCG@10 with different ratios of

short-term data to all training data.

4.5.3 Effectiveness of KG-aware Contrastive Learning. In this sub-
section, we show the effectiveness of the kg-aware contrastive
learning in a visual way. This module is designed for pushing the
related item nodes more closer on the knowledge graph. As a result,
we random sample 1, 000 pairs of items, one from the source domain
and the other from the target domain on the test set. Note that each
pair of items is a pair of first-order neighbour on the knowledge
graph and have been clicked by the same user. According to our as-
sumption, although the two items are from different domains, they
can be jointly trained through the kg-aware contrastive learning.
Therefore, the representations of a item pair are supposed to be
closer than without this module.

We trained on the models containing the kg-aware contrastive
learning loss, and not containing this loss, respectively, to obtain
embeddings of these 1, 000 pairs of items. Then we calculate the
cosine similarity between the 1, 000 pairs of item embeddings and
draw the frequency distribution histogram showed as Figure 6.
Here, KIPSw/o kдc means not containing the kg-aware contrastive
learning, KIPS means the complete model. The frequency distri-
bution histogram shows intuitively that the complete KIPS has a
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Figure 6: The frequency distribution histogram of cosine

similarity between 1,000 pairs of item embeddings.

higher cosine similarity in the whole. Note that the average value
of cosine similarity of KIPSw/o kдc is 0.5772 while KIPS is 0.6683,
but the minimal values are 0.3750, 0.5795 respectively. This demon-
strates that the distribution of KIPS is more concentrated. Hence,
the addition of kg-aware contrastive learning promotes a higher
similarity of the representations of related items from different
domains, which conforms to our expectation.

4.6 Online A/B Test

We deploy our proposed model on the Alipay search platform pro-
viding cross-domain search service of Fund and Stock, and conduct
online A/B test the Fund search scenario(i.e., target domain). One
bucket is KIPS, and another is the latest model deployed online.
The collaborative knowledge graphs cover interactions of three
weeks and can be updated everyday. KIPS achieves performance
gains of 0.45% and 1.2% improvement on UV-CTR and UV-CTCVR
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Table 6: The relative improvements on Alipay on the Fund

search scenario on the target crowd

Metric UV-CTR UV-CTCVR
Relative Improvement +3.15% +10.52%

(i.e., the number of clicked/conversion users divided by the num-
ber of viewed users). Furthermore, we evaluate KIPS on the target
crowd who have interacted on the Stock search scenario(i.e., source
domain) in the last three weeks. The results of relative improve-
ments compared to baseline are shown in Table 6, indicating the
effectiveness of information transfer across domains.

5 CONCLUSION

A large-scale product search system calls more for personlization
since the potential candidate items that are relevant to the user’s
query are numerous. However, one can not make brick without
straw. The same goes for personlized product search. In this paper,
we aim to exploit the historical search behaviors of a user for bet-
ter personalized search intent understanding. Facing the possible
semantic gap and data sparsity problem, we resort to a marriage
between cross-domain transfer learning and knowledge graph. The
proposed KIPS have demonstrated significant superiority over two
real-world large-scale product search datasets as well as the online
A/B testing. In the future, we plan to extend KIPS with more than
two domains for better search accuracy.
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